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ABSTRACT

In practical applications, the thermodynamic state relations of partially ionized gas mix-
tures are usually approximated in terms of the state relations of the pure partially ionized con-
stituent gases or materials in isolation. Such approximations are ordinarily based on an artificial
partitioning or separation of the mixture into its constituent materials, with materialk regarded
as being confined by itself within a compartment or subvolume with volume fractionαk and pos-
sessing a fractionβk of the total internal energy of the mixture. In a mixture ofN materials, the
quantitiesαk andβk constitute an additional 2N− 2 independent variables. The most common
procedure for determining these variables, and hence the state relations for the mixture, is to re-
quire that the subvolumes all have the same temperature and pressure. This intuitively reasonable
procedure is easily shown to reproduce the correct thermal and caloric state equations for a mix-
ture of neutral (non-ionized) ideal gases. Here we wish to point out that (a) this procedure leads to
incorrectstate equations for a mixture of partially ionized ideal gases, whereas (b) the alternative
procedure of requiring that the subvolumes all have the same temperature and free electron density
reproduces the correct thermal and caloric state equations for such a mixture. These results readily
generalize to the case of partially degenerate and/or relativistic electrons, to a common approxima-
tion used to represent pressure ionization effects, and to two-temperature plasmas. This suggests
that equating the subvolume electron number densities or chemical potentials instead of pressures
is likely to provide a more accurate approximation even in nonideal plasma mixtures.
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1. INTRODUCTION

Multicomponent hydrodynamics calculations require thermodynamic state relations for

material mixtures. Unfortunately, it is rarely feasible to construct accurate state relations for mul-

ticomponent atomic mixtures of interacting materials, and even less feasible to employ them in

practice. In lieu of this, it is necessary to approximate the state relations of the mixture in terms of

those of the pure materials of which it is composed. The question then arises of how to construct

the best or most accurate approximations of this type.

The only obvious way to proceed is to regard the mixture as being artificially partitioned or

separated into its constituent components or materials, with materialk regarded as being confined

by itself within a compartment or subvolume with volume fractionαk and possessing a fractionβk

of the total internal energy of the mixture, where of course∑k αk = ∑k βk = 1. Thus, in a mixture

of N materialsN−1 of the variablesαk may be independently varied, and anotherN−1 of the

variablesβk, for a total of 2N−2 such variables. In most hydrodynamical situations, the natural

independent thermodynamic variables for the mixture are the partial mass densitiesρk and the

specific internal energy (energy per unit mass)I , which is not purely thermal but also includes

chemical/ionization energy. The values ofρk and I are therefore presumed known. The mass

density of pure materialk within its subvolume is then given by

ρ̃k = ρk/αk (1)

The internal energy density (energy per unit volume) of the mixture isρI , whereρ = ∑k ρk is the

total mass density. According to the definition ofβk, the internal energy of materialk per unit total

volume is then simplyβkρI , so the internal energy density of materialk within its subvolume is
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βkρI/αk = ρ̃kIk, whereIk is the specific internal energy of materialk. It follows that

ρkIk = βkρI (2)

and we note that∑k ρkIk = ρI . Together with the known values ofρk andI , knowledge ofαk and

βk is therefore sufficient to determinẽρk andIk, which are the natural independent thermodynamic

variables for materialk in isolation. The state relations for pure materialk are also presumed

known, soρ̃k andIk then determine the remaining thermodynamic properties of materialk, such as

its pressure ˜pk, temperatureTk, and so on.

Two problems now remain: (a) how to determineαk andβk, thereby determining ˜pk, Tk,

etc., and (b) having done so, how to compute the thermodynamic properties of the mixture, such

as its pressurep and temperatureT, in terms of the thermodynamic properties of the individual

materialsk of which it is composed. In order to determine the 2N− 2 variablesαk and βk, it

is necessary to impose 2N− 2 conditions. The most common, natural, and intuitive choice for

these conditions is to require that the subvolumes are in pressure and temperature equilibrium with

each other. Requiring all the subvolume pressures ˜pk to be equal imposesN−1 conditions, and

requiring all their temperaturesTk to be equal imposes anotherN−1, so this provides the 2N−2

conditions needed to determine the values ofαk andβk, thereby solving problem (a). Moreover,

it is natural to identify the resulting common value of the ˜pk with the pressurep of the mixture,

and that of theTk with the temperatureT of the mixture, thereby solving problem (b) as well. This

procedure seems intuitively reasonable, but of course it represents an uncontrolled approximation

in general. (The true state relations for a dense gas mixture depend on the form of the interaction

potential between atoms and ions of different materials, and this information does not enter into the
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state relations of the pure materials.) However, it is easy to show, and appears to be well known,

that this procedure is actually exact for a mixture of neutral (non-ionized) ideal gases, and produces

precisely the correct thermal and caloric state equations for such a mixture (see Appendix). This

encourages the hope that the same procedure will also provide a reasonable approximation to the

state relations of non-ideal mixtures.

Unfortunately, the above procedure doesnot produce the correct state relations for a mix-

ture of partially ionized ideal gases, as will be shown in the next section. The physical reason

for this is simply that the electrons produced by the ionization of one material tend to suppress

the ionization of the others, andvice versa,and this effect is not accounted for in the procedure

described above. The purpose of this paper is to show that this problem may be removed simply by

equating the free electron densities of the subvolumes instead of their pressures. When this is done,

the procedure thus modified reproduces the correct state relations for a mixture of partially ionized

ideal gases. Moverover, this remedy is remarkably general; it applies to a mixture of an arbitrary

number of materials, even in the presence of multiple ionization and partially degenerate and/or

relativistic electrons. It also remains valid when used in conjunction with a common approxima-

tion for pressure ionization, as well as in two-temperature plasmas. Of course, this procedure, like

pressure equilibration, becomes an uncontrolled approximation for dense mixtures, in which the

atoms and ions of different materials interact with each other. However, the fact that it is at least

exact for ideal mixtures, in contrast to pressure equilibration, suggests that it is likely to provide a

better approximation in dense partially ionized gas mixtures.

In ideal systems, equilibrating subvolume temperatures and free electron number densities

is equivalent to equilibrating temperatures and electron chemical potentials. This equivalence no

longer obtains in dense systems, where one would intuitively expect that it is the chemical poten-
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tials that should be equilibrated, since differences between them are the general thermodynamic

driving forces associated with mass exchange between subsystems, and in the present context the

artificial partitions separating the subvolumes may be thought of as semipermeable membranes

through which free electrons may pass but heavy particles may not. The equilibration of elec-

tron number density, or chemical potential, instead of pressure has previously been proposed on

intuitive grounds, but we are unaware of a previous published justification for this procedure.

The present discussion is organized as follows. In Sect. 2 we consider mixtures of classical

partially ionized ideal gases, and show that the equilibrating subvolume pressures and temperatures

leads to incorrect mixture state relations, while equating subvolume temperatures and free electron

densities reproduces the correct state relations. In Sect. 3 these results are generalized to the case

of partially degenerate and/or relativistic electrons, and to a common approximation for pressure

ionization. The case of two-temperature plasmas, in which the electron temperatureTe differs from

the heavy particle temperature, is discussed in Sect. 4. Sect. 5 contains a few concluding remarks.

2. CLASSICAL IDEAL GASES

2.1 The True Mixture

We consider a classical ideal gas mixture ofN different types of atoms denoted by the sym-

bols Xk (k= 1,2, ...,N), the various ionization states of which are denoted by Xn
k (n= 0,1,2, ...,Nk),

so that X0
k refers to neutral atoms of Xk while Xn

k for n≥ 1 refers ton-tuply ionized Xk; i.e., X1
k

= X+
k , X2

k = X++
k , etc. The free electrons will simply be denoted by the symbole, which will

also be used as a sub- or superscript as convenient. The mass of a single particle of Xn
k is denoted

by mn
k, and clearlymn

k = m0
k−nme, wherem0

k is the mass of a single neutral atom of X0
k andme
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is the mass of a single electron. The partial mass density of Xk in the mixture is denoted byρk,

which is presumed to be a known given quantity and is of course is unchanged by ionization. The

partial number density of Xk in the absence of ionization would then benk = ρk/m
0
k, which is

therefore also a known quantity. The partial mass density of Xn
k in the ionized mixture is denoted

by ρ
n
k = mn

knn
k, wherenn

k is the corresponding partial number density. Similarly, the partial mass

density of free electrons in the mixture isρe = mene, wherene is the partial number density of

free electrons in the mixture. Since the particle masses are known, the partial mass and number

densities carry equivalent information, but it will usually be more convenient to work in terms of

the latter.

Since the total number density of heavy particles of each material is unchanged by ioniza-

tion, the number densitiesnn
k are constrained by theN equations

∑
n

nn
k = nk (3)

In addition, conservation of electrons implies the condition

∑
kn

nnn
k = ne (4)

The specific internal energy (energy per unit mass)I of the mixture is also presumed known, and

is related to the specific internal energies of the individual species by

∑
kn

mn
knn

kIn
k (T)+meneIe(T) = ρI (5)

whereρ = ∑k ρk is the total mass density of the mixture,T is the temperature, andIn
k (T) andIe(T)
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are the caloric equations of state for the heavy particles and electrons, respectively, including their

heats of formation, or in the present context ionization energies. We assume that the mixture is in

ionization equilibrium, which implies that the number densities are further constrained byNs Saha

equations of the form [1]

nn+1
k ne

nn
k

= Kn
k (T) (1≤ k≤ N;0≤ n≤ Nk−1) (6)

whereNs = ∑k Nk and the quantitiesKn
k (T) are equilibrium constants which are known functions

of T [1].

Equations (3)–(6) constituteN+1+1+Ns = Ns+N+2 equations in the unknown variables

nn
k, ne, and T. There areNh variablesnn

k, whereNh = ∑k(Nk + 1) = Ns + N, so there areNh +

2 = Ns + N + 2 unknowns. The system of Eqs. (3)–(6) is therefore closed and the solution is

determinate. Once these equations have been solved andT is known, the pressure of the mixture

is then given by the thermal equation of state for an ideal gas mixture, namely

p = ∑
kn

nn
kkBT +nekBT = ∑

k

nkkBT +nekBT (7)

wherekB is Boltzmann’s constant. Equations (3)–(7) therefore implicitly determine both the pres-

surep and temperatureT of the mixture as a function of the variables(ρk, I).

2.2 The Partioned Mixture

We now suppose that the mixture is artificially partitioned into subvolumes as described in

the Introduction. According to Eqs. (1) and (2), the density of material Xk within its subvolume is
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thenρ̃k = ρk/αk, while its specific internal energy isIk = βkρI/ρk. In the absence of ionization,

the number density of materialk within its subvolume would then be ˜nk = ρ̃k/m
0
k = ρk/(αkm

0
k) =

nk/αk. The number density of Xnk within materialk is denoted by ˜nn
k, and the number density of

free electrons within materialk is denoted by ˜ne
k. The total number density of heavy particles of

materialk is again unchanged by ionization, so the number densities ˜nn
k for each materialk are

constrained by the equation

∑
n

ñn
k = ñk = nk/αk (8)

while conservation of electrons for materialk implies the additional condition

∑
n

nñn
k = ñe

k (9)

The specific internal energy of materialk within its subvolume is related to the specific internal

energies of its individual species by

∑
n

mn
kñn

kIn
k (Tk)+meñ

e
kIe(Tk) = ρ̃kIk = ρ̃kβkρI/ρk = βkρI/αk (10)

The assumption of ionization equilibrium further implies that the number densities within material

k are constrained by theNk Saha equations

ñn+1
k ñe

k

ñn
k

= Kn
k (Tk) (0≤ n≤ Nk−1) (11)

The number densities ˜nn
k and ñe

k within materialk are particle numbers per unit volume

of materialk. In order to facilitate comparison with the true mixture relations, it is convenient to
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eliminate these number densities in favor of the corresponding partial number densities (particle

numbers per unit total volume)nn
k = αkñ

n
k andne

k = αkñ
e
k. Equations (8)–(11) then become

∑
n

nn
k = nk (12)

∑
n

nnn
k = ne

k (13)

∑
n

mn
knn

kIn
k (Tk) + men

e
kIe(Tk) = βkρI (14)

nn+1
k ne

k

nn
k

= αkK
n
k (Tk) (0≤ n≤ Nk−1) (15)

If αk andβk were known, Eqs. (12)–(15) would constituteNk + 3 equations in theNk + 3

unknownsnn
k, ne

k, andTk for each materialk, and the pressure ˜pk within materialk would then be

given by p̃k = ∑n ñn
kkBTk + ñe

kkBTk, or

αk p̃k = ∑
n

nn
kkBTk +ne

kkBTk = (nk +ne
k)kBTk (16)

In order to determine the variablesαk and βk for all k, we must impose an additional 2N− 2

conditions. Since the quantitiesKn
k (T) andIn

k (T) are in general nonlinear functions ofT, if we are

to have any hope of reproducing the true solution for the mixture it is obvious that we must require

temperature equilibrium between the subvolumes; i.e.,Tk = T1≡ T for k = 2, ...,N. This provides

N−1 conditions which we may regard as determining the variablesβk. Equations (14)–(16) then

become

∑
n

mn
knn

kIn
k (T) + men

e
kIe(T) = βkρI (17)
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nn+1
k ne

k

nn
k

= αkK
n
k (T) (0≤ n≤ Nk−1) (18)

αk p̃k = (nk +ne
k)kBT (19)

The system of equations to be solved now consists of Eqs. (12), (13), and (17)–(19) for allk.

The total number of these equations isN + N + N + Ns+ N = Ns+ 4N, and if theαk were known

the remaining unknown quantities would benn
k, ne

k, T, βk, and p̃k, the total number of which is

Nh +N+1+(N−1)+N = Nh +3N = Ns+4N. The system is therefore determinate for givenαk.

Let us now see how close we are to achieving consistency with the corresponding relations

for the true mixture, namely Eqs. (3)–(7). Equation (12) is already of the same form as Eq. (3),

while summing Eq. (13) overk yields

∑
kn

nnn
k = ne (20)

wherene = ∑k ne
k is the total number density of free electrons; i.e., the free electrons produced by

ionization of all materials per unit total volume. Equation (20) is seen to be of the same form as

Eq. (4). Summing Eq. (17) overk reproduces Eq. (5), and summing Eq. (19) overk reproduces

Eq. (7) provided that we letp = ∑k αk p̃k. Thus we already have consistency with Eqs. (3)–(5) and

(7) even though theαk still remain arbitrary, and the only remaining question is whether we can

determine them in such a way that the partitioned Saha equations (18) are consistent with the true

mixture Saha equations (6). Of course this does not require that theαk be specified explicitly in

closed form; they can also be implicitly determined by imposing an additionalN−1 independent

conditions on the unknown variablesnn
k, ne

k, T, αk, βk, and/orp̃k. Comparison of Eqs. (6) and (18)

shows that these equations would indeed be consistent if these additionalN−1 conditions can be
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shown to imply the relationsαk = ne
k/ne, or

ne
k = αkne (21)

Let us see if equating the subvolume pressures produces the desired effect, since we know

that this works for mixtures of neutral non-ionized ideal gases (see Appendix). Thus we set ˜pk =

p̃1≡ p for k = 2, ...,N, whereupon Eq. (19) becomesαkp = (nk +ne
k)kBT, so that

αk =
(nk +ne

k)kBT

(∑ j n j +ne)kBT
=

nk +ne
k

∑ j n j +ne
(22)

Solving forne
k, we find

ne
k = αkne+ αk∑

j
n j −nk (23)

which differs from Eq. (21). Equating the subvolume pressures therefore results in an inconsistency

between the partitioned Saha equations (15) and the true mixture Saha equations (6), and this of

course destroys the desired consistency between the partitioned and true mixture equations as a

whole.

The observant reader will notice that Eqs. (21) and (23) would no longer differ if it could

somehow be shown thatαk = nk/∑ j n j as well. This cannot in general be true, however, since

thenk are known given quantities independent ofT, whereas it is clear thatne
k/ne will in general

depend strongly onT via the equilibrium constantsKn
k .

Fortunately, the inconsistency is easily remedied. OnlyN−1 of the relations (21) required

to achieve the desired consistency are independent, since their sum overk reduces to an identity.

The relations (21) themselves can therefore be imposed as the additional conditions required to
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determine theαk, and when this is done Eqs. (6) and (15) immediately and automatically become

consistent. Moreover, Eq. (21) is equivalent to ˜ne
k = ne, which simply states that the free electron

densities of all the different materials within their respective subvolumes are equal. Equating these

free electron densities instead of pressures thereby produces full consistency of the equations for

the partitioned mixture with those of the true mixture. Of course, the subvolume pressures ˜pk will

then no longer be equal, and the correct mixture pressure is then simply given byp = ∑k αk p̃k as

discussed above. Note that the quantitiespk ≡ αk p̃k play the role of partial pressures, since their

sum is the total pressurep of the mixture.

3. PARTIALLY DEGENERATE AND/OR RELATIVISTIC ELECTRONS

AND PRESSURE IONIZATION EFFECTS

The development of the preceding section was restricted to classical (Maxwell-Boltzmann)

statistics. In many applications, however, the electrons may be partially degenerate quantum-

mechanically, or relativistic, or both, and the development requires modifications. In particular,

the pressure and specific internal energy of the free electrons, as well as the ionization equilibrium

constants in the Saha equations, then no longer depend onT alone but acquire a dependence onne

as well [1]. Equation (5) for the true mixture is therefore replaced by

∑
kn

mn
knn

kIn
k (T)+meneIe(T,ne) = ρI (24)
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while Eq. (17) for the partitioned mixture is replaced by

∑
n

mn
knn

kIn
k (T)+men

e
kIe(T,n

e
k/αk) = βkρI (25)

where the precise functional form ofIe(T,ne) is immaterial for present purposes.

In the same way, Eq. (6) for the true mixture is replaced by

nn+1
k ne

nn
k

= Kn
k (T,ne) (26)

while Eq. (18) for the partitioned mixture is replaced by

nn+1
k ne

k

nn
k

= αkK
n
k (T,ne

k/αk) (27)

where the precise functional form ofKn
k (T,ne) is also immaterial for present purposes. The final

such modification is that Eq. (7) for the true mixture is replaced by

p = ∑
k

nkkBT + pe(ne,T) (28)

while Eq. (19) for the partitioned mixture is replaced by

αk p̃k = nkkBT + αkpe(ne
k/αk,T) (29)

and the precise functional form of the electron pressurepe(ne,T) is again immaterial.

Let us now see if the relations (21) still suffice to ensure the desired consistency between
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the true and partitioned mixture relations. Combining Eqs. (21) and (25) and summing overk,

we obtain precisely Eq. (24), while combining Eqs. (21) and (27) reproduces Eq. (26). Finally,

combining Eqs. (21) and (29) and summing overk, we obtain precisely Eq. (28) provided that we

let p= ∑k αk p̃k as before. The relations (21) therefore still suffice to ensure the desired consistency,

and hence can still be employed as the additional conditions required to determine theαk for this

purpose.

A similar situation obtains with regard to a common approximation used to represent pres-

sure ionization effects [2], wherein those effects are modeled by introducing a further approximate

dependence on the free electron density into the ionization equilibrium constantsKn
k . The func-

tional form of this dependence is again immaterial for present purposes; whatever it is, it may

simply be incorporated into the functionsKn
k (T,ne), so that Eqs. (26) and (27) continue to apply

and the consistency conditions (21) again remain unchanged.

4. TWO-TEMPERATURE PLASMAS

In many situations of interest, the temperatureTe of the free electrons differs from the

temperatureT of the heavy particles, and the development then requires still further modifications.

In this case,Te is determined by a separate evolution equation for the specific internal energyIe of

the free electrons, which therefore becomes an additional known quantity in the description. In the

true mixture, we then have

Ie(Te,ne) = I0
e (30)

whereI0
e is the known given value ofIe as determined by the electron energy equation. Equation

(24) for the total energy density in the true mixture, including that of the free electrons, then
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becomes

∑
kn

mn
knn

kIn
k (T)+meneIe(Te,ne) = ∑

kn

mn
knn

kIn
k (T)+meneI

0
e = ρI (31)

In the artificially partitioned mixture, each material now has its own electron temperature

Te
k , and it becomes necessary to partition the electron energy density as well as the total internal en-

ergy density. For this purpose we introduce electron energy partitioning parametersβ
e
k analogous

to theβk, so that

ne
kIe(T

e
k ,n

e
k/αk) = β

e
k neI

0
e (32)

while Eq. (25) for the partitioned mixture now becomes

∑
n

mn
knn

kIn
k (T)+men

e
kIe(T

e
k ,n

e
k/αk) = ∑

n
mn

knn
kIn

k (T)+meneβ
e
k I0

e = βkρI (33)

The Saha equations in a two-temperature plasma remain controversial [3–13], but most of

the competing variants have in common the feature that the ionization equilibrium constantsKn
k

acquire a dependence onTe in addition to their dependences onT andne. The Saha equations (26)

for the true mixture then become

nn+1
k ne

nn
k

= Kn
k (T,Te,ne) (34)

while the corresponding equations (27) for the artificially partitioned mixture become

nn+1
k ne

k

nn
k

= αkK
n
k (T,Te

k ,n
e
k/αk) (35)
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In a two-temperature plasma, Eq. (28) for the true mixture pressure is replaced by

p = ∑
k

nkkBT + pe(ne,Te) (36)

while Eq. (29) for the subvolume pressures in the partitioned mixture becomes

αk p̃k = nkkBT + αkpe(ne
k/αk,T

e
k ) (37)

Guided by the preceding development, we may anticipate that theβ
e
k should be determined

by requiring the electron temperatures of all materials to be equal; i.e.,Te
k = Te

1 ≡Te for k= 2, ...,N.

Equations (32) and (33) then become

ne
kIe(Te,n

e
k/αk) = β

e
k neI

0
e (38)

∑
n

mn
knn

kIn
k (T) + meneβ

e
k I0

e = βkρI (39)

while the Saha equations (35) become

nn+1
k ne

k

nn
k

= αkK
n
k (T,Te,n

e
k/αk) (40)

and Eq. (37) becomes

αk p̃k = nkkBT + αkpe(ne
k/αk,Te) (41)

We now check to see if the conditions (21) still suffice to ensure consistency between

Eqs. (30) and (31) for the true mixture and Eqs. (38) and (39) for the partitioned mixture. Com-
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bining Eq. (21) with Eqs. (38) and (39), we obtain

αkneIe(Te,ne) = β
e
k neI

0
e (42)

while Eq. (39) remains unchanged. Summing Eqs. (42) and (39) overk, we obtain precisely

Eqs. (30) and (31), so the desired consistency obtains for the energies.

The next step is to see if the conditions (21) also suffice to ensure consistency between

Eq. (34) for the true mixture and Eq. (40) for the partitioned mixture. Combining Eqs. (21) and

(40), we obtain precisely Eq. (34), thereby confirming the desired consistency for the Saha equa-

tions. Finally, combining Eq. (21) with Eq. (41) and summing overk, we obtain

∑
k

αk p̃k = ∑
k

nkkBT + pe(ne,Te) (43)

which agrees precisely with Eq. (36) provided that we again letp = ∑k αk p̃k. The conditions (21)

therefore again produce full consistency between the relations for the true and partitioned mixtures.

5. CONCLUSION

We have shown that equating the temperatures and free electron densities (or equivalently

chemical potentials) in the subvolumes of an artificially partitioned mixture of partially ionized

ideal gases reproduces the correct thermal and caloric state equations of the true mixture, even

when the electrons are partially degenerate and/or relativistic and/or their temperature differs from

that of the heavy particles. It should be noted, however, that theentropyof the true mixture,

and hence the other thermodynamic potentials (free energies) defined in terms of it, differs from
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the sum of the subvolume entropies by an entropy of mixing, but this difference can readily be

evaluated and accounted for in ideal systems. The total entropy per unit volume of the true mixture

is given by

σ = ∑
kn

nn
k[s0

kn(T)−kB lnnn
k]+ σe(ne,Te) (44)

wheres0
kn(T) is a function ofT alone, andσe(ne,Te) is the entropy per unit volume of the free

electrons, which again may be partially degenerate and/or relativistic. The entropy of materialk

per unit volume of materialk within the artificially partitioned mixture is similarly given by

σ̃k = ∑
n

ñn
k[s0

kn(T)−kB ln ñn
k]+ σe(ñe

k,Te) (45)

The total entropy per unit total volume of the artificially partitioned mixture is therefore given by

σ
′ = ∑

k

αkσ̃k = ∑
kn

nn
k[s0

kn(T)−kB ln(nn
k/αk)]+∑

k

αkσe(ñe
k,Te) (46)

As already shown, equating the electron number densities of the subvolumes implies that ˜ne
k = ne,

so that Eq. (46) becomes

σ
′ = ∑

kn

nn
k[s0

kn(T)−kB lnnn
k +kB lnαk]+ σe(ne,Te)

= σ +kB∑
k

nk lnαk (47)

in which the last term is the aforementioned entropy of mixing, which is seen to be simple in form

and easily evaluated. Equation (47) relates the entropy per unit volume of the true mixture to that

of the artificially partitioned mixture, thereby allowing the former to be calculated from the latter.
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Since the thermal and caloric state equations resulting from the present procedure are exact

for ideal systems, they areipso factothermodynamically consistent. In dense systems, it intuitively

seems preferable to equilibrate the electron chemical potentials rather than number densities, and

since the resulting state relations are no longer exact, thermodynamic consistency is no longer so

obvious. However, it may be argued that thermodynamic consistency should be preserved by virtue

of the fact that the artificially partitioned mixture, although admittedly different from the true mix-

ture, may nevertheless be regarded as a real albeit idealized physical system in which the partitions

separating the subvolumes are semipermeable membranes with pores so small that only the free

electrons, but not the heavy particles, may pass through them. As is well known, the chemical

potential of any species that can pass through such a membrane has the same value on both sides,

so equating the electron chemical potentials is indeed the physically correct condition to impose

in this situation. This procedure should therefore produce the physically correct state relations

for the partitioned system, and if so those state relations shouldipso factobe thermodynamically

consistent as well, even though they are only an approximation to those of the true mixture.
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APPENDIX

Here we wish to show that equating the subvolume pressures and temperatures reproduces

the correct state relations for a mixture of neutral (non-ionized) ideal gases. The thermal and

caloric equations of state for such a mixture are given by

p = ∑
k

nkkBT (A1)

ρI = ∑
k

ρkIk(T) (A2)

wherekB is Boltzmann’s constant,nk = ρk/mk is the number density of materialk,mk is its atomic

mass, andIk(T) is its specific internal energy, which is presumed known as a function ofT. Equa-

tion (A2) implicitly determines the mixture temperatureT as a function of the known independent

variablesρk andI . Substitution into Eq. (A1) then yields the mixture pressurep as a function of

the same variables.

Now suppose the mixture is artificially partitioned into subvolumes as described in the

Introduction. According to Eqs. (1) and (2), the density of materialk within its subvolume is then

ρ̃k = ρk/αk, while its specific internal energy isIk = βkρI/ρk. Thus the number density of material

k within its subvolume is ˜nk = ρ̃k/mk = nk/αk, and the pressure and temperature of materialk

within its subvolume are therefore given by

p̃k =
nkkBTk

αk
(A3)

ρkIk(Tk) = βkρI (A4)

If the αk andβk were known, Eqs. (A3) and (A4) would constitute 2N equations in the 2N un-
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knownsp̃k andTk. In order to determineαk andβk as well, we require an additional 2N−2 equa-

tions, which we obtain by requiring the subvolumes to be in pressure and temperature equilibrium;

i.e., p̃k = p̃1≡ p andTk = T1≡ T for k = 2, ...,N. Equations (A3) and (A4) then become

αkp = nkkBT (A5)

βkρI = ρkIk(T) (A6)

Summing these equations overk, we obtain precisely Eqs. (A1) and (A2). The variablesp and

T computed by artificially partitioning the system and equilibrating subvolume temperatures and

pressures are therefore identical to the correct pressure and temperature of the true unpartitioned

mixture.

It is noteworthy that the pressure equilibration, while intuitively appealing, is not actually

necessary. If we simply setTk = T1 ≡ T to determine theβk but leave the volume fractionsαk

arbitrary, Eq. (A6) is unchanged while Eq. (A5) is replaced by

αk p̃k = nkkBT (A7)

Summing Eq. (A6) overk then yields Eq. (A2) as before, while summing Eq. (A7) overk yields

Eq. (A1) with p replaced by∑k αk p̃k. The quantityp = ∑k αk p̃k in the partitioned system is there-

fore the same as the correct pressure of the mixture, regardless of the values of theαk. Thus, even

when theαk are chosen arbitrarily and the subvolume pressures ˜pk are unequal, the correct pres-

sure of the mixture may be obtained simply by computing the volume-weighted average of the

subvolume pressures.
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